This is a complete college textbook, including a detailed Table of Contents, seventeen Chapters (each with a set of relevant homework problems), a list of References, two Appendices, and a detailed Index. The book is intended to enable students to: The book's general organization is: The general minimum prerequisite for understanding this book is the intellectual maturity of a junior-level (third-year) college student in an accredited four-year engineering curriculum.… (more)

This is a complete college textbook, including a detailed Table of Contents, seventeen Chapters (each with a set of relevant homework problems), a list of References, two Appendices, and a detailed Index. The book is intended to enable students to: The book's general organization is: The general minimum prerequisite for understanding this book is the intellectual maturity of a junior-level (third-year) college student in an accredited four-year engineering curriculum. A mathematical second-order system is represented in this book primarily by a single second-order ODE, not in the state-space form by a pair of coupled first-order ODEs. Similarly, a two-degrees-of-freedom (fourth-order) system is represented by two coupled second-order ODEs, not in the state-space form by four coupled first-order ODEs. The book does not use bond graph modeling, the general and powerful, but complicated, modern tool for analysis of complex, multidisciplinary dynamic systems. The homework problems at the ends of chapters are very important to the learning objectives, so the author attempted to compose problems of practical interest and to make the problem statements as clear, correct, and unambiguous as possible. A major focus of the book is computer calculation of system characteristics and responses and graphical display of results, with use of basic (not advanced) MATLAB commands and programs. The book includes many examples and homework problems relevant to aerospace engineering, among which are rolling dynamics of flight vehicles, spacecraft actuators, aerospace motion sensors, and aeroelasticity. There are also several examples and homework problems illustrating and validating theory by using measured data to identify first- and second-order system dynamic characteristics based on mathematical models (e.g., time constants and natural frequencies), and system basic properties (e.g., mass, stiffness, and damping). Applications of real and simulated experimental data appear in many homework problems. The book contains somewhat more material than can be covered during a single standard college semester, so an instructor who wishes to use this as a one-semester course textbook should not attempt to cover the entire book, but instead should cover only those parts that are most relevant to the course objectives.

(less)